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It is shown for the first time that the gradient diffusion hypothesis often adopted for
thermal dispersion heat flux in heat transfer within porous media can be derived from
a transport equation for the thermal dispersion heat flux based on the Navier–Stokes
and energy equations. The transport equation valid for both thermal equilibrium
and non-equilibrium cases is mathematically modelled so that all unknown spatial
correlation terms, associated with redistribution and dissipation of the dispersion heat
flux, are expressed in terms of determinable variables. The unknown coefficients are
determined analytically by considering of macroscopically unidirectional flow through
a tube as treated by Taylor. Taylor’s expression for the dispersion has been generated
from the transport equation. Both laminar and turbulent flow cases are investigated
to obtain two distinct limiting expressions for low- and high-Péclet-number regimes.
The results obtained for the Taylor diffusion problem are translated to the case of
heat and fluid flow in a packed bed, to obtain the corresponding expressions for the
axial dispersion coefficient in a packed bed. The resulting expression for the high-
Péclet-number case agrees well with the empirical formula, validating of the present
transport analysis.

1. Introduction
Dispersion is the spreading of mass or heat caused by variations in fluid velocity

about the mean velocity. In addition to molecular thermal diffusion, there is significant
mechanical dispersion in heat and fluid flow in a fluid-saturated porous medium, as
a result of hydrodynamic mixing of the fluid particles passing through pores. This
thermal dispersion causes additional heat transfer, which leads to complications in
dealing with transport processes in fluid-saturated porous media.

Yagi, Kunii & Wakao (1960) and Wakao & Kaguei (1996) experimentally investiga-
ted the enhanced mixing due to mechanical dispersion. They assembled the results in
terms of apparent axial and transverse conductivities, i.e. the dispersion coefficients.
Their experimental data based on measurements of effective conductivities of packed
beds revealed that the longitudinal dispersion coefficient is much larger than the
transverse one. Following the initiative work by Yagi et al. (1960), a number of
researchers conducted experimental investigations, such as Gunn & Khalid (1975), Li
& Finlayson (1977) and Hunt & Tien (1988). An excellent review may be found in
Vafai & Amiri (1998).

One of the simplest ways to illustrate the mechanism of thermal dispersion is to
consider the rate of spreading of the heat (or mass) content caused by the radial
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velocity non-uniformity of the fluid flowing inside a circular tube. This problem was
considered by Taylor (1953) and later generalized by Aris (1956). The analytical
expression for the effective diffusion coefficient based on the Taylor dispersion
equation for sample concentration is used for various chromatographic measurement
methodologies. Since this analytical treatment in a tube by Taylor, a number of
theoretical and experimental efforts (e.g. Koch & Brady 1985; Han, Bhakta &
Carbonell 1985; and Vortmeyer 1975) have been made to establish useful correlations
for estimating the effective thermal conductivities due to thermal dispersion (see
Kaviany 1995). Recently, Golfier, Quintard & Whitaker (2002) have appealed to
a volume-averaging theory with a two medium treatment and predicted an axial
dispersion coefficient which is somewhat less than Taylor’s. Fried & Combornous
(1971) and Kaviany (1995) provided excellent reviews on the Taylor–Aris dispersion
problem and related matters.

In recent years, a series of numerical attempts have been made to determine the
thermal dispersion coefficients directly from numerical experiments. Full Navier–
Stokes and energy equations were solved by Eidsath et al. (1983) and Edwards et
al. (1991) for flows through a periodic structure of circular cylinders with in-line
and staggered arrangements. Arquis, Caltagirone & Le Breton (1991) extended the
numerical model proposed by Coulaud, Morel & Caltagirone (1988) to the coupling of
momentum and heat transfer to study both axial and transverse dispersion coefficients.
The elegance of Arquis and his group is that they imposed a macroscopic temperature
gradient either normal or parallel to a macroscopically uniform flow such that
the microscopic temperature field within only one structural unit is needed, as in
the velocity field, to determine the corresponding dispersion coefficient. Kuwahara,
Nakayama & Koyama (1996) and Kuwahara & Nakayama (1999) followed the
numerical approach proposed by Arquis et al., assuming a macroscopically uniform
flow through a lattice of rods, to elucidate the effects of microscopic velocity and
temperature fields on the thermal dispersion. They set a macroscopically uniform flow
passing through a lattice of square rods placed regularly in an infinite space, where
a macroscopically linear temperature gradient was imposed either perpendicular or
parallel to the flow direction. The macroscopic results were integrated over a unit
structure to evaluate both transverse and longitudinal thermal dispersion coefficients.
Two sets of distinct expressions for the transverse dispersion, as a function of the
porosity and Péclet number, were established for the low- and high-Péclet-number
ranges. This numerical experiment, which agrees well with available experiments,
confirms that the longitudinal dispersion is substantially higher than the transverse
dispersion, as reported by Yagi et al. (1960) who were the first to measure the effective
longitudinal (axial) thermal conductivities of packed beds.

In all these previous investigations, gradient hypotheses were employed in
which the dispersion heat flux is proportional to the gradient of the volume-
averaged temperature with the proportionality coefficient being the dispersion thermal
conductivity. Although available experimental and numerical data suggest the validity
of such gradient hypotheses, its fundamental transport mechanism has never been
examined in terms of the conservation equations based on first principles. To our
knowledge, the transport equation of the dispersion heat flux vector based on first
principles has never been explored to derive the expressions for the dispersion heat
flux components. In this paper, we shall derive such a transport equation valid
for both thermal equilibrium and non-equilibrium cases from the volume-averaged
version of Navier–Stokes and energy equations, and perform mathematical modelling
for the spatial correlation terms associated with redistribution and dissipation of the
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Figure 1. Microscopic view of porous structure.

dispersion heat flux. The unknown coefficients in the resulting model equation will
be determined analytically by considering a homogeneous macroscopic flow through
a bundle of circular tubes with microscopic velocity and temperature profiles as
assumed by Taylor. Both laminar and turbulent flow cases will be treated, to obtain
two distinct expressions, namely, low- and high-Péclet-number expressions for the
dispersion thermal conductivities. The resulting expressions for the tube flow will be
transformed to estimate the thermal dispersion in packed beds, upon appealing to an
equivalent tube diameter concept.

2. Volume-averaged governing equations
In order for the volume averaging (smoothing process) to be meaningful, we

consider a control volume V in a fluid-saturated porous medium, as shown in figure 1,
whose length scale V 1/3 is much smaller than the macroscopic characteristic length
V 1/3

c , but, at the same time, much greater than the microscopic (porous structure)
characteristic length (see e.g. Nakayama 1995). Under this condition, the volume
average of a certain variable φ is defined as

〈φ〉 ≡ 1

V

∫
Vf

φ dV . (1)

Another average, namely, the intrinsic average, is given by

〈φ〉f ≡ 1

Vf

∫
Vf

φ dV (2)

where Vf is the volume space which the fluid occupies. Obviously, the two averages
are related as

〈φ〉 = ε〈φ〉f (3)

where ε ≡ Vf /V is the porosity. Following Cheng (1978), Quintard & Whitaker
(1993), Nakayama (1995) and many others, we decompose a variable into its intrinsic
average and the spatial deviation from it:

φ = 〈φ〉f + φ̃. (4)



84 A. Nakayama, F. Kuwahara and Y. Kodama

We shall exploit the following spatial average relationships:

〈φ1φ2〉f = 〈φ1〉f 〈φ2〉f + 〈φ̃1φ̃2〉f , (5)

〈∇φ〉 = ∇〈φ〉 +
1

V

∫
Aint

φ dA or 〈∇φ〉f =
1

ε
∇ε〈φ〉f +

1

Vf

∫
Aint

φ dA, (6a, b)

and 〈
∂φ

∂t

〉
=

∂〈φ〉
∂t

(7)

where Aint is the local interface between the fluid and solid, while dA is its vector
element pointing outward from the fluid side to the solid side. The similarity between
the volume averaging and the Reynolds averaging used in the study of turbulence
is quite obvious. However, it should be noted that the present volume averaging
procedure is somewhat more complex than the Reynolds averaging procedure, since
it involves surface integrals, as clearly seen from (6).

We consider the microscopic governing equations, namely, the continuity equation,
Navier–Stokes equation (with negligible body force) and energy equations (with
negligible frictional heat generation under small Eckert number) for two phases:

∂uj

∂xj

= 0, (8)

∂ui

∂t
+

∂

∂xj

ujui = − 1

ρ

∂p

∂xi

+
∂

∂xj

νf

(
∂ui

∂xj

+
∂uj

∂xi

)
, (9)

ρf cpf

(
∂T

∂t
+

∂

∂xj

ujT

)
=

∂

∂xj

(
kf

∂T

∂xj

)
, (10)

ρscs

∂T

∂t
=

∂

∂xj

(
ks

∂T

∂xj

)
, (11)

where the subscripts f and s stand for the fluid and solid, respectively, and νf is
kinematic viscosity. It is assumed that the fluid is incompressible and all properties
are constant. We consider a random rigid porous structure, and integrate spatially
the foregoing microscopic governing equations, using the spatial average relationships
given by (5) to (7). The resulting volume-averaged (macroscopic) governing equations
are as follows:

∂〈uj 〉f

∂xj

= 0, (12)

∂〈ui〉f

∂t
+

∂

∂xj

〈uj 〉f 〈ui〉f = − 1

ρf

∂〈p〉f

∂xi

+
∂

∂xj

νf

(
∂〈ui〉f

∂xj

+
∂〈uj 〉f

∂xi

)

+
1

Vf

∫
Aint

(
−p

ρ
+ ν

(
∂ui

∂xj

+
∂uj

∂xi

))
nj dA − ∂

∂xj

〈ũj ũi〉f , (13)

ερf cpf

(
∂〈T 〉f

∂t
+

∂

∂xj

〈uj 〉f 〈T 〉f

)

=
∂

∂xj

(
εkf

∂〈T 〉f

∂xj

+
kf

V

∫
Aint

T nj dA − ερf cpf
〈ũj T̃ 〉f

)
+

1

V

∫
Aint

kf

∂T

∂xj

nj dA, (14)



Thermal dispersion flux transport equation 85

(1 − ε) ρscs

∂〈T 〉s

∂t
=

∂

∂xj

(
(1 − ε) ks

∂〈T 〉s

∂xj

− ks

V

∫
Aint

T nj dA

)
− 1

V

∫
Aint

kf

∂T

∂xj

nj dA,

(15)

where 〈T 〉s is the intrinsic average of the solid temperature, and nj is the unit
vector pointing outward from the fluid side to the solid side. The porosity ε is
assumed to be constant within a medium. Moreover, the no-slip conditions are used
over the interface of the rigid solid structure. Note that the dispersion heat flux
ρf cpf 〈ũj T̃ 〉 = ερf cpf 〈ũj T̃ 〉f appears in the volume-averaged energy equation (14) for
the fluid phase.

In order to close the above macroscopic equations (12) to (15), the terms associated
with the surface integral are modelled according to Vafai & Tien (1981) as

1

Vf

∫
Aint

(
− p

ρf

+ νf

(
∂ui

∂xj

+
∂uj

∂xi

))
nj dA − ∂

∂xj

〈ũj ũi〉f

= −νf

K
ε〈ui〉f − bε2(〈uk〉f 〈uk〉f )1/2〈ui〉f (16)

which is the well-known Forchheimer-extended Darcy law, where K and b are the
permeability and Forchheimer constant, respectively. The term describing the interfa-
cial heat transfer between the fluid and solid, namely,

1

V

∫
Aint

kf

∂T

∂xj

nj dA = af hf (〈T 〉s − 〈T 〉f ), (17)

is modelled according to Newton’s cooling law, where af and hf are the specific
surface area and interfacial heat transfer coefficient, respectively. Furthermore, the
surface integral terms

kf

V

∫
Aint

T nj dA and − ks

V

∫
Aint

T nj dA

present the tortuosity heat fluxes, which are usually small as convection dominates
over conduction (see e.g. Nakayama et al. 2001). Thus, the macroscopic momentum
and energy equations may be written as

∂〈ui〉f

∂t
+

∂

∂xj

〈uj 〉f 〈ui〉f = − 1

ρ

∂〈p〉f

∂xi

+
∂

∂xj

νf

(
∂〈ui〉f

∂xj

+
∂〈uj 〉f

∂xi

)

− νf

K
ε〈ui〉f − bε2(〈uk〉f 〈uk〉f )1/2〈ui〉f , (18)

ερf cpf

(
∂〈T 〉f

∂t
+

∂

∂xj

〈uj 〉f 〈T 〉f

)

=
∂

∂xj

(
εkf

∂〈T 〉f

∂xj

− ερf cpf
〈ũj T̃ 〉f

)
− af hf (〈T 〉f − 〈T 〉s), (19)

(1 − ε) ρscs

∂〈T 〉s

∂t
=

∂

∂xj

(
(1 − ε) ks

∂〈T 〉s

∂xj

)
− ashf (〈T 〉s − 〈T 〉f ). (20)

For the cases of thermal equilibrium, namely, 〈T 〉f = 〈T 〉s , two energy equations
are conveniently combined to form a single energy equation for the fluid-saturated
porous media:
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(ερf cpf
+ (1 − ε) ρscs)

∂〈T 〉f

∂t
+ ερf cpf

∂

∂xj

〈uj 〉f 〈T 〉f

=
∂

∂xj

(
(εkf + (1 − ε)ks)

∂〈T 〉f

∂xj

− ερf cpf
〈ũj T̃ 〉f

)
. (21)

Thus, in the case of thermal equilibrium, we need only determine the dispersion heat
flux ρcpf 〈ũj T̃ 〉. However, in what follows, we shall derive the transport equation for

〈ũj T̃ 〉 valid not only for the case of thermal equilibrium but also for the case of
non-thermal equilibrium.

3. Dispersion heat flux transport equation
Having established the set of volume-averaged governing equations, we shall follow

a procedure analogous to the one used in deriving the Reynolds stress transport
equation. Thus, we first subtract the macroscopic equations (12), (18) and (19) from
the microscopic equations (8), (9) and (10), respectively, and obtain the corresponding
transport equations for the spatial deviations as follows:

∂ũj

∂xj

= 0, (22)

Dũi

Dt
+

∂

∂xj

(ũj 〈ui〉f + ũi ũj )

= − 1

ρf

∂p̃

∂xi

+
∂

∂xj

νf

(
∂ũi

∂xj

+
∂ũj

∂xi

)
+

νf

K
ε〈ui〉f + bε2(〈uk〉f 〈uk〉f )1/2〈ui〉f , (23)

DT̃

Dt
+

∂

∂xj

(ũj 〈T 〉f + ũj T̃ − 〈ũj T̃ 〉f ) =
∂

∂xj

(
αf

∂T̃

∂xj

)
+

ashf

ερf cpf

(〈T 〉f − 〈T 〉s), (24)

where αf is the thermal diffusivity of the fluid and

Dφ

Dt
≡ ∂φ

∂t
+ 〈uj 〉f ∂φ

∂xj

(25)

is a shorthand notation for the substantial derivative based on the intrinsic velocity.
We note the obvious relationship

Dũi T̃

Dt
= T̃

Dũi

Dt
+ ũi

DT̃

Dt
(26)

and formulate the terms on the right-hand side using the transport equations (23)
and (24) as

∂ũi T̃

∂t
+

∂

∂xj

(
〈uj 〉f ũi T̃ + T̃ ũi ũj − αf ũi

∂T̃

∂xj

)

= −T̃ ũj

∂〈ui〉f

∂xj

− ũi ũj

∂〈T 〉f

∂xj

+ T̃

(
− 1

ρf

∂p̃

∂xi

+
∂

∂xj

νf

(
∂ũi

∂xj

+
∂ũj

∂xi

))
− αf

∂ũi

∂xj

∂T̃

∂xj

+ ũi

∂

∂xj

〈ũj T̃ 〉 + T̃

(
νf

K
ε〈ui〉f + bε2(〈uk〉f 〈uk〉f )1/2〈ui〉f

)
+ ũi

ashf

ερf cpf

(〈T 〉f − 〈T 〉s)

(27)
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where the deviation continuity equation (22) has been exploited. Then, carrying out
the volume averaging treatment under the no-slip condition ũi = −〈ui〉f over the
interface, we can derive the following transport equation for the dispersion heat flux
after some manipulations:

D〈ũi T̃ 〉f

Dt
(convection)

+
∂

∂xj

(
〈T̃ ũi ũj 〉f − αf

〈
ũi

∂T̃

∂xj

〉f )
(diffusion)

= −
(

〈T̃ ũj 〉f ∂〈ui〉f

∂xj

+ 〈ũi ũj 〉f ∂〈T 〉f

∂xj

)
(production)

−
〈

αf

∂T̃

∂xj

∂ũi

∂xj

〉f

(dissipation)

+

〈
T̃

(
− 1

ρf

∂p̃

∂xi

+
∂

∂xj

νf

(
∂ũi

∂xj

+
∂ũj

∂xi

))〉f

. (redistribution) (28)

The convection and diffusion terms on the left-hand side of (28) represent the
spatial transport of the dispersion heat flux. As the divergence theorem indicates,
these terms can influence the overall aspect of the thermal dispersion only through
the events occurring on the boundaries. It is the first term on the right-hand side that
is responsible for generating the dispersion heat flux by the gradients of the volume-
averaged temperature and velocity, and thus, the term may be called the production
term. The analogy between the dispersion heat flux and the turbulent wall heat flux
indicates that the second and third terms on the right-hand side correspond to the
dissipation and redistribution terms, respectively. These two terms almost balance with
the production term. Thus, for the first approximation, we may neglect the spatial
transport terms and obtain the following algebraic equation:

−
(

〈T̃ ũj 〉f ∂〈ui〉f

∂xj

+ 〈ũi ũj 〉f ∂〈T 〉f

∂xj

)
−

〈
αf

∂T̃

∂xj

∂ũi

∂xj

〉f

+

〈
T̃

(
− 1

ρf

∂p̃

∂xi

+
∂

∂xj

νf

(
∂ũi

∂xj

+
∂ũj

∂xi

))〉f

= 0. (29)

4. Closure problem
Both dissipation and redistribution terms need some mathematical modelling

to close the transport equation. According to a practice used in turbulence, a
common way to model the redistribution term is to introduce the turbulent–turbulent
interaction term (i.e. slow term) and turbulent–mean gradient interaction term (i.e.
rapid term). However, it can easily be shown that the redistribution term must vanish
for the tube flow problem, namely, the Taylor diffusion problem. This indicates that
the term is negligible for most homogeneous macroscopic flows in porous media.
Thus, one possible way to describe its overall mechanism is to retain only the rapid
term 〈

T̃

(
− 1

ρf

∂p̃

∂xi

+
∂

∂xj

νf

(
∂ũi

∂xj

+
∂ũj

∂xi

))〉f

= Cr〈ũj T̃ 〉f ∂〈ui〉f

∂xj

. (30)
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If a transport equation is available for the dissipation rate 〈αf (∂T̃ /∂xj )/(∂ũi/

∂xj )〉f , the set of macroscopic equations could be closed, since (29) along with

(30) provides a complete set of algebraic equations for 〈ũi T̃ 〉f . In this study, however,
we do not try to obtain such a transport equation for the dissipation rate (as in the
study of turbulence); instead, we seek an expression for the dissipation rate, which
describes its fundamental mechanism. Upon noting that the dissipation rate increases
with both the intensity of the dispersion heat flux 〈ũkT̃ 〉f and of 〈ũi ũj 〉f , we propose
a very simple model, with its fundamental mechanism as follows:

〈
αf

∂T̃

∂xj

∂ũi

∂xj

〉f

= βjk〈ũi ũj 〉f 〈ũkT̃ 〉f , (31)

where βjk is a symmetric tensor since the medium under consideration is a homo-
genous structure. Substituting (30) and (31) into (29) yields

− (1 − Cr ) 〈T̃ ũj 〉f ∂〈ui〉f

∂xj

− 〈ũi ũj 〉f

(
∂〈T 〉f

∂xj

+ βjk〈ũkT̃ 〉f

)
= 0. (32)

When the flow is homogeneous, which is usually the case for flow in porous media,
∂〈ui〉f /∂xj may be neglected. Thus, dropping (1 − Cr )∂〈ui〉f /∂xj , we obtain the
effective thermal conductivity model as

〈ũkT̃ 〉f = −β−1
jk

∂〈T 〉f

∂xj

(33)

where βikβ
−1
jk = δij . The foregoing expression reveals an obvious relationship between

the dispersion thermal diffusivity tensor (αdis)ij and the symmetric tensor βij as

(αdis)ij = β−1
ij . (34)

In this way, we can extract the gradient diffusion hypothesis commonly used for
the thermal dispersion flux from its fundamental transport equation based on the
Navier–Stokes and energy equations.

We note that the off-diagonal elements of the symmetric tensor βij are zero for
isotropic media, and that βij is invariant with respect to the origin of the coordinate
system. Considering these requirements and also the empirical fact implied by Fried &
Combarnous (1971) that the axial dispersion element exceeds the transverse element
roughly by a factor of 20, we propose one of the simplest tensor forms, as follows:

βij =
1

αax

〈ui〉f 〈uj 〉f

|〈�u〉f |2
+

Ctr

αax

(
δij − 〈ui〉f 〈uj 〉f

|〈�u〉f |2
)

(35)

where Ctr ≡ αax/αtr ∼ 20 is the ratio of the longitudinal dispersion coefficient to the
transverse dispersion coefficient and |〈�u〉f | =

√
〈uk〉f 〈uk〉f is the magnitude of the

intrinsic velocity vector (invariant in the transformation).

5. Determination of the coefficient αax

The coefficient αax may be determined from experiments, as a function of thermal
diffusivity, local intrinsic velocity and morphological parameters. Such experimental
investigations are needed for a variety of porous media. Nonetheless, it would be
worthwhile to estimate it roughly from analytical consideration of a simple pressure-
driven flow in a collection of circular tubes, as shown in figure 2, which corresponds
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Figure 2. Flow through a bundle of circular tubes.

Tw = Tw(x)
w

∂T
∂r

= 0

Tw Tw

r

x

Figure 3. Velocity and temperature profiles in a tube.

to the Taylor dispersion model. Subsequently, we shall seek a possible extension to
the case of heat and fluid flow in a packed bed.

Substituting (35) into (31), we obtain

〈
αf

∂T̃

∂xj

∂ũi

∂xj

〉f

= βjk〈ũi ũj 〉f 〈ũkT̃ 〉f

=
1

αax

〈ũi ũ〉f 〈ũT̃ 〉f +
Ctr

αax

(〈ũi ṽ〉f 〈ṽT̃ 〉f + 〈ũiw̃〉f 〈w̃T̃ 〉f ). (36)

5.1. Laminar flow case (Low Péclet number regime)

We assume a macroscopically unidirectional flow through a bundle of tubes (i.e.
Hagen–Poiseuille flow), as illustrated in figure 2, in which the both velocity and
temperature profiles are fully–developed, as illustrated in figure 3, such that

ui = (〈u〉f f (η) , 0, 0) (37)

and

T − Tw = (〈T 〉f − Tw)g(η) (38)

where η = r/R is the dimensionless radial coordinate. Since the microscopic flow
(in a tube) is unidirectional, its deviations are also unidirectional and thus the
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thermal dispersion from a macroscopic viewpoint is expected to be purely axial.
Upon substituting these expressions in (36), we find

αax =
〈ũ2〉f 〈ũT̃ 〉f

〈
αf

∂T̃

∂r

∂ũ

∂r

〉f
=

〈(f − 1)2〉f 〈(f − 1) (g − 1)〉f

〈
df

dη

dg

dη

〉f
αf

(
〈u〉f R

αf

)2

. (39)

As we specify the profile functions f (η) and g (η), we can easily calculate the
proportionality constant associated with αax .

Let us assume the following functions describing the fully developed velocity and
temperature profiles:

f (η) = 2(1 − η2) (40)

and

g (η) = (3/4)(3 − 4η2 + η4) (41)

which is the profile we would obtain for constant wall heat flux. Noting that

〈φ〉f = 2

∫ 1

0

ηφ (η) dη (42)

such that 〈f 〉f = 〈g〉f = 1, and substituting these profile functions into (39), we readily
obtain

αax

αf

=
(kdis)ax

kf

=
1

64

(
〈u〉f R

αf

)2

. (43)

This expression should hold for most cases of thermal non-equilibrium, since the
temperature profile given by (41) allows net heat transfer through a solid–fluid
interface. The resulting proportionality constant 1/64 is very close to 1/60 obtained
by Golfier et al. (2002) using their method of volume averaging.

Taylor (1953) considered the rate of spreading of the thick disk of mass content
using a transformed axial coordinate, and obtained an expression for the axial
dispersion coefficient with functional form identical to (43) but with its proportional
constant being 1/48, which is somewhat larger than the foregoing value 1/64. This
is due to the difference in the boundary condition at the tube wall. Taylor assumed
that the species does not penetrate through the wall, which corresponds to the case
of an adiabatic wall as illustrated in figure 3. One possible functional form would be

g (η) = 3(1 − η2)2 (44)

such that it satisfies dg/dη|η = 1 = 0 and 〈g〉f =1 in addition to the symmetric condition.
We substitute the temperature profile function given by (44) along with the fully
developed velocity profile function given by (40) into (39) and then find an expression
identical to that of Taylor:

αax

αf

=
(kdis)ax

kf

=
1

48

(
〈u〉f R

αf

)2

. (45)

This expression should hold for most cases of thermal equilibrium, since the
temperature profile prohibits any heat from transferring through the interface between
the solid and fluid.

5.2. Turbulent flow case (High-Péclet-number regime)

De Lemos & Pedras (2001) showed using their double-decomposition theory that
either a time–space or space–time order of application of averaging operators
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is immaterial for deriving the macroscopic momentum and energy equations for
turbulent flow in porous media. However, the two different orders of applying
operators lead to two distinct definitions of macroscopic turbulence kinetic energy,
namely, the volume average of the Reynolds-averaged turbulence kinetic energy
and the time-averaged kinetic energy of the volume-averaged fluctuating velocity
components. Guo et al. (2003) applied three different models based on the former
definition, namely, those of Nakayama & Kuwahara (1999), de Lemos & Pedras
(2001) and Takeda (1994), to the gas flow in a circular packed column of spheres and
validated them against one another and against experimental data in the literature.
They reported that these models predict widely different turbulent eddy diffusivity,
with the model by Nakayama & Kuwahara being the best in predicting a reasonable
eddy diffusivity. Therefore, we start with the Reynolds-averaged version of the
governing equations (such as derived by Nakayama & Kuwahara 1999) so as to form
the transport equation for the thermal dispersion heat flux vector associated with
deviations of the microscopic Reynolds-averaged velocity and temperature. On the
other hand, the turbulent microscopic dispersion associated with both time and spatial
deviations (which is most likely to be negligible compared to the aforementioned
dispersion) could be modelled together with turbulent mixing (Rocamora & de
Lemos 2000) and thus requires no transport equation.

It is straightforward to start with the Reynolds-averaged version of the governing
equations (see Nakayama & Kuwahara 1999 for details) and follow the decomposition
and volume averaging procedure as illustrated for the case of laminar flow. The
resulting expression is

αax =
〈ũ2〉f 〈ũT̃ 〉f

〈(
αf +

νt

σT

)
∂T̃

∂r

∂ũ

∂r

〉f
� 〈ũ2〉f 〈ũT̃ 〉f

〈
νt

σT

∂T̃

∂r

∂ũ

∂r

〉f
=

〈ũ2〉f 〈ũT̃ 〉f〈
qt

ρf cpf

∂u

∂r

〉f
(46)

where u and T are the Reynolds-averaged velocity and temperature, respectively.
Furthermore, qt , νT and σT are the turbulent heat flux, turbulent kinematic viscosity
and turbulent Prandtl number, respectively. The wall laws may be used:

u = uτ

(
1

κ
ln n+ + B

)
(47)

and

T − Tw =
qwσT

uτρf cpf

(
1

κ
ln n+ + A

)
(48)

where uτ and qt are the friction velocity and wall heat flux, respectively, and
n+ = uτn/νf is the dimensionless distance measured from the wall (n= R − r). κ

is the von-Kármán constant while both B and A are empirical constants. It is easy
to find

ũ =
uτ

κ

(
ln ζ +

3

2

)
(49)

and

T̃ =
qwσT

uτρf cpf κ

(
ln ζ +

3

2

)
(50)
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noting that

〈φ〉f = 2

∫ 1

0

ηφ (ζ ) dη = 2

(∫ 1

0

φ (ζ ) dζ −
∫ 1

0

ζφ (ζ ) dζ

)
(51)

where

ζ = n/R = 1 − η. (52)

Using profile functions (49) and (50), we have

〈ũ2〉f 〈ũT̃ 〉f =
u2

τ σT qw

κ4ρf cpf

(〈(
ln ζ +

3

2

)2〉f )2

=

(
5

4

)2
u2

τ σT qw

κ4ρf cpf

(53)

and 〈
qt

ρf cpf

∂u

∂r

〉f

�
(

qw

ρf cpf

)(
uτ

κRζref

)
=

qwuτ

ρf cpf κR exp
(

− 1
2
(3 −

√
5)

) (54)

where (
ln ζ ref +

3

2

)2

=

〈(
ln ζ +

3

2

)2〉f

=
5

4
. (55)

Since the wall law fails towards the laminar sublayer, we have exploited the constant
stress and heat flux approximation valid for the equilibrium turbulent boundary layer,
namely, qt � qw and du/dn � uτ/κn. Substituting (53) and (54) into (46), we have

αax

αf

=
(kdis)ax

kf

�
(

5

4

)2

e−(3−
√

5)/2 σT

κ3

(
uτR

αf

)
� 14

(
uτR

αf

)
(56)

where κ and σT are set to 0.41 and 0.9, respectively, according to Launder & Spalding
(1974). Expression (56) is very close to Taylor’s (1954) one:

αax

αf

=
(kdis)ax

kf

� 10.06

(
uτR

αf

)
. (57)

Upon substituting the Blasius friction law:

λf ≡
(

−d〈p〉f

dx

)/(
ρf (〈u〉f )2

4R

)
=

8τw

ρf (〈u〉f )2
= 0.3164

(
〈u〉f 2R

νf

)−1/4

(58)

into (56), we obtain an approximate expression for the axial dispersion coefficient as
follows:

αax

αf

=
(kdis)ax

kf

� 14

(
uτR

αf

)
= 14

√
λf

8

(
〈u〉f R

αf

)
� 2.55

(
〈u〉f R

αf

)7/8

Pr1/8. (59)

The two distinct expressions (43) and (59) obtained for the low- and high-Péclet-
number limiting cases are presented in figure 4 for the case of Pr =1, in which the
two lines intersect at 〈u〉f R/αf = 93Pr1/9. Since the high-Péclet-number expression
depends only weakly on Pr, the transition Péclet number may be roughly estimated
as 〈u〉f R/αf =100 for most fluids, irrespective of the value of Pr.

6. Extension to the case of dispersion in a packed bed
We have determined the thermal dispersion coefficients for heat transfer in a bundle

of tubes, which provided an excellent test for the closure problem associated with the
present transport equation based on the volume averaging theory. The idea of using
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Figure 4. Axial thermal dispersion coefficient for low- and high-Péclet-number cases at
Pr = 1.

tubes to obtain insight into complex transport processes in real porous media has
been explored in the past by a number of researchers such as Taylor (1953) and Aris
(1956). Although the limits associated with such a simple system as a bundle of tubes
must certainly be born in mind, a possible extension of the foregoing results to a
packed bed may still be worthwhile. The empirical evidence for porous media, namely,
the axial dispersion element predominating over the transverse element, supports such
an extension based on a bundle of tubes in which the latter element virtually vanishes.

Thus, we may generalize the foregoing results to the case of dispersion in a packed
bed. Nakayama, Kuwahara & Motoyama (2004b) introduced an analogy between the
tube flow and the flow through a packed bed, to translate the results obtained for the
tube flows to the cases of packed beds. They rewrite Ergun’s (1952) empirical formula
for a unidirectional flow through a packed bed:

−d〈p〉f

dx
=

150 (1 − ε)2

ε2d2
p

µf 〈u〉f + 1.75
1 − ε

εdp

ρf (〈u〉f )2 (60)

to conform with the Poiseuille formula as

λeq ≡
(

−d〈p〉f

dx

)/(
ρf (〈u〉f )2

2deq

)
=

64

Redeq

+ 1.62 (61)

where

Redeq
≡ 〈u〉f deq

νf

=

√
32

150

ε

1 − ε

〈u〉f dp

νf

(62)

is the Reynolds number based on the equivalent tube diameter which is related to the
particle diameter dp as

deq = 2R =

√
32

150

ε

1 − ε
dp. (63)

From a comparison of the numerical results obtained for arrays of square cylinders
(Nakayama, Kuwahara & Hayashi 2004a) with the foregoing friction coefficient
formula they concluded that Ergun’s formula, when based on the equivalent tube
diameter, is a universal law that can be used for most two- and three-dimensional
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Figure 5. Comparison of the present formula with the empirical formula for packed beds
for Pr = 1.

periodic structures in a wide porosity range. We shall exploit this equivalent tube
diameter concept as

〈u〉f R

αf

=

√
4

75

ε

1 − ε

〈u〉f dp

αf

=

√
4

75

1

1 − ε

〈u〉dp

αf

∼= 0.385
〈u〉dp

αf

(64)

where the porosity for a packed bed is assumed to be ε = 0.4 and 〈u〉dp/νf , commonly
used for a packed bed, is the particle Reynolds number based on the particle diameter
dp and Drcian velocity 〈u〉 = ε〈u〉f . Upon substituting the foregoing relationship into
(43) and (59), we obtain the following expressions for the packed beds:

αax

αf

=
(kdis)ax

kf

= 0.00232

(
〈u〉dp

αf

)2

(for the low-Péclet-number regime), (65)

αax

αf

=
(kdis)ax

kf

� 1.11

(
〈u〉dp

αf

)7/8

Pr1/8 (for the high-Péclet-number regime). (66)

These expressions for the packed beds are presented in figure 5 along with the
empirical formula proposed by Yagi et al. (1960) for a packed bed in a high-Péclet
number range, namely,

(kdis)ax

kf

= 0.5

(
〈u〉dp

αf

)
(empirical (Yagi et al. 1960)). (67)

Our high-Péclet-number expression (66) for the axial dispersion coefficient, despite the
difference in the Reynolds number dependence, closely follows the empirical formula
established by Yagi et al. This substantiates the validity of the present extension based
on the equivalent tube diameter.

In this analysis, a simple tube flow model has been adopted, and then the results
have been translated to packed beds using the concept of equivalent tube diameter.
The results are valid for packed beds with porosity around 0.4. But it should be noted
that the present correlations may fail to hold for other cases such as highly porous
media or more complex structural geometries.
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7. Conclusions
In this study, the gradient diffusion hypothesis for thermal dispersion heat flux has

been examined in terms of its transport equation derived from the Navier–Stokes
and energy equations. It has been shown that the differential transport equation can
be reduced to an algebraic transport equation if we drop the spatial transport terms.
The gradient diffusion expression usually adopted for the thermal dispersion heat
flux can be generated naturally from this algebraic transport equation. The Taylor
diffusion problem, namely, a macroscopically unidirectional flow through a tube, has
been considered to determine the unknown model constants. It has been found that
Taylor’s expression for the axial dispersion is obtainable if we assume adiabatic tube
walls. Both laminar and turbulent flow cases are investigated to obtain two distinct
limiting expressions for low- and high-Péclet-number regimes. The results obtained
for tube flow are translated to the case of flow in a packed bed to obtain the
corresponding expressions for the axial dispersion coefficient in a packed bed. The
resulting expression for the high-Péclet-number case agrees well with the empirical
formula established by Yagi et al.
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